Episode 40: OR Vent modes On this episode: Dr. Jed Wolpaw In this episode, episode 40, I go over the basics of Vent modes and settings in the operating room and how they differ from the ICU. I also discuss a few common special cases and how to adjust the vent to deal with them. ## **Table of Contents** Hyperlinks to section of notes. | ICU VS. OR DIFFERENCES | 2 | |------------------------------|---| | BASIC MODES | 2 | | CONTROLLED VENTILATOR MODES | 2 | | SPONTANEOUS VENTILATOR MODES | 3 | | SETTINGS | 3 | | COMMON APPROACH | | | SPECIAL CASES | 4 | | | | ### ICU vs. OR Differences | | ICU | OR | |---------------------------|--|--| | Patient
Differences | Goal: wean patients off vent Patients rarely receive NMB or general anesthetic → patients usually awake | Goal: continue until surgery is over Usually short ventilation in patients with normal lungs Patients usually receive NMB and GA → cooperation and synchrony with ventilator is better | | Ventilator
Differences | Has more modes for awake patients and prolonged weaning | Less powerful than ICU ventilators → not able to generate same PEEP pressures In circuit with vaporizers | #### **Basic Modes** - Controlled vs. spontaneous modes - o Controlled modes machine controls majority; patient may be able to trigger breath - Spontaneous modes machine dependent on patient to set respiratory pattern and initiate breaths - Patient with induced paralysis require controlled modes - Newer ventilators will revert to controlled mode if patient is apneic on spontaneous modes #### Controlled Ventilator Modes - Controlled mechanical ventilator all breathes controlled by ventilator; patient cannot trigger breaths → uncomfortable for conscious patients - **Intermittent mandatory ventilation (IMV)** machine delivers set RR and TV, but patient is able to breathe in-between mandatory breaths - Patient initiated breaths are unsupported - Synchronized intermittent mandatory ventilation (SIMV) machine detects drop in pressure in circuit (pressure trigger) or increased flow (flow trigger) → fully supported breath is given - If no breath is detected, machine gives breath at end of window - If patient is breathing faster than set rate, breaths above set rate will not be supported - Pressure support + SIMV → patient gets support for extra breath - Pressure-cycled or volume-cycled set for support - Ventilator settings: TV, RR, FiO₂, PEEP - Pressure Control Volume Guarantee (PCVG); Adaptive Pressure Control (APC); Pressure Regulated Volume Control (PRCV) set desired TV; ventilator adjusts pressure to achieve TV - o Plateau pressure changes between breaths compared with pressure control ## Spontaneous Ventilator Modes - Pressure Support Ventilator (PSV) most common mode for spontaneous assisted ventilation - Machine provides set PEEP and FiO₂, but patient determines RR, TV, respiratory pattern - o Flow- or pressure- triggered - More comfortable for awake patients → commonly used in ICU - o Amount of pressure can be titrated to achieve desired TV and MV - Uses in OR: - Patient is spontaneously breathing (eg. with LMA in place) - At end of case when patient is waking up and see negative deflections in ETCO₂ tracing and actual RR > set rate - Less commonly used in OR during start or main portion of case - Ventilator may switch to mandatory mode if patient is apneic - Manual breathing "the bag" patient taken off ventilator and take breaths on own - No support from ventilator - No PEEP unless pop-off valve is slightly closed - Patient has added resistance with ETT compared to breathing normally ## Settings - Prevent post-op respiratory complications using: - o PEEP ~ 5cmH₂O - TV 6-8mL/kg of predicted body weight - ± periodic recruitment maneuvers - May cause hypotension (↓preload), pneumothorax, pressure on suture lines - Low FiO₂ → conflicting evidence - See free radicals in exhaled gas ~1 hour after supplementary O₂ - o 100% FiO₂ causes lung inflammation - o Absorptive atelectasis when O₂ absorbed by blood > CO₂ delivered to alveoli ## **Common Approach** - Ventilate patient with ventilator set on manual and pop-off valve open - Set ventilator on mandatory mode once patient is induced and apneic - Initial settings should be: - TV 6-8mL/kg - PEEP \geq 5 cmH₂O; may use 6 to 8 cmH₂O on obese patients - o RR 12, then adjusted based on ETCO₂ - I:E may need to be increased to 1:3 in patients with obstructive lung disease - Flow-time curve should be coming back to baseline → otherwise, develop dynamic hyperinflation aka. auto-PEEP - If can't change I:E ratio, increase flow or decrease RR → need to allow more exhalation time - Inspiratory TV may not match expiratory TV in the following situations: - PCVG → because machine constantly adjusting - o SIMV → small leaks in system and small amount in gas sampling line - If > 50cc, investigate cause - When notches or extra breaths appear in ETCO₂ tracing, different approaches to take: - Give more paralytics - o Increase anesthetic depth - o Increase MV \rightarrow lower CO₂ \rightarrow inhibits CO₂-mediated respiratory drive - Switch patient to spontaneous mode (eg. pressure support) and let them breath on own - Patient breathing spontaneously =/= patient is waking up - At end of case, allow CO_2 to rise by $\sqrt{RR} \rightarrow \uparrow pCO_2 \rightarrow \uparrow drive$ to breath \rightarrow breathing \rightarrow switch to pressure support or manual - Once patient is reversed and on manual ventilation, assess extubation criteria: - Ability to take good tidal volumes of at least 5mL/kg - Maintain normal spO₂, normal ETCO₂ - o Follow commands - o Demonstrate adequate strength (eg. breathing, four twitches with no fade) - No ongoing surgical bleeding - No concern for any acid-base disturbances - People typically extubate on 100% O₂, may extubate on less to avoid absorptive atelectasis - For patients with significant lung disease, EtCO₂ may not correlated with pCO₂ → check VBG or ABG to determine gap ## **Special Cases** - Laparoscopic surgery: - Abdomen insufflated with $CO_2 \rightarrow$ pressure on diaphragm $\rightarrow \uparrow$ pressure required to push diaphragm down $\rightarrow \uparrow$ PEEP to ~10cmH₂O (if patient euvolemic) to counteract - May require very high PEEP → switch to pressure control or pressure control volume guarantee - ETCO₂ may rise as abdomen CO₂ is absorbed \rightarrow could \uparrow RR, but being careful to stop when insufflation is stopped - Steep Trendelenburg: abdominal organs press up on diaphragm causing similar effect - Need for one lung ventilation - Accomplished in three ways: - Advancing standard ETT into mainstem bronchus - Using double lumen ETT - Using bronchial blocker - \circ \downarrow TV by ~1/3 - Pressure cycled modes are harder because no guaranteed TV → easier to use volume control and reduce volume to keep PEEP <30cmH₂O as long as there's adequate oxygenation and ventilation #Is this how you use ventilators in the OR? #Are there other special situations that are important? Comments or suggestions? Please email accrac@accrac.com or leave a comment on the website. Fan of the show? Please take a moment to leave a comment and a rating to help others find the show! Want to support the show? Patreon.com/ACCRAC to become a patron and support the making of the show, or donate to paypal.me/ACCRAC Notes by April Liu