Episode 56: Bugs and Drugs Part 1 with Rachel Kruer

On this episode: Dr. Jed Wolpaw and Rachel Kruer

In this episode, episode 56, I welcome Rachel Kruer to the show. Rachel is one of our amazing ICU pharmacists and we discuss common bacteria and the drugs we use to treat them. This is part 1 of a 2 part series that I'll be doing with Rachel on this topic.

Table of Contents

Hyperlinks to section of notes.

PHARMACODYNAMICS VS. PHARMACOKINETICS	2
CATEGORIZING BACTERIA	2
BETA-LACTAMS	2
AZTREONAM	3
CARBAPENEMS	4
CASE EXAMPLES	4
FLUOROQUINOLONES	4
VANCOMYCIN	5
AMINOGLYCOSIDES	5
MACROLIDES	6
LINEZOLID	6
DAPTOMYCIN	6
SULFONAMIDE ANTIBIOTICS	6
CLINDAMYCIN	7
COLISTIN	7
GLYCYLCYCLINE	7
METRONIDAZOLE (FLAGYL)	
VANCOMYCIN RESISTANT ENTEROCOCCUS	
SURGICAL PROPHYLAXIS	8

Pharmacodynamics vs. Pharmacokinetics

1:08 - 7:09

- Pharmacodynamics is what drug does to body
 - Time dependent killing → drugs require certain amount of time above minimum inhibitory concentration
 - Concentration dependent killing → peak dependent killing
 - Eg. aminoglycosides
 - Total exposure dependent → dependent on area under the curve (AUC) above MIC
 - Eg. Vancomycin
 - Minimum inhibitory concentration (MIC) → minimum concentration of drug that inhibits the growth of the bacteria
 - Specific to bug-drug combination
 - Most microbiology lab will indicate whether infection is susceptible, intermediate, or resistant
 - Break point = highest MIC at which antibiotic will be able to achieve good killing
 - Also have to consider tissue penetration
- Pharmacokinetics is what body does to drug
 - o Eg. body clearance of drug, renal dosing

Categorizing Bacteria

7:10 - 12:09

- Gram positive vs. gram negative AND aerobic vs. anaerobic
 - o For gram positive bugs, further categorized by:
 - Cocci vs. bacilli
 - Chains vs. clusters
 - o For gram negative aerobic bugs, further categorized by:
 - Lactose fermenting or non-lactose fermenting
 - For non-lactose fermenting bugs, further categorized by:
 - Oxidase positive vs. oxidase negative
 - If have very sick patient, want to be broad → what grows initially may not be everything that is going on
- Rapid genetic tests may provide results within 3 hours

Beta-Lactams

12:10 - 19:39

- Good gram positive activity, do NOT cover MRSA
- **Penicillins** → type of beta-lactams
 - Broadest penicillin is *Piperacillin Tazobactam* (aka Tazocin) → only one in this class that covers Pseudomonas
- May contain beta-lactamase inhibitor which would extend coverage
 - One of resistance mechanisms of bacteria is to upregulate beta-lactamase enzyme → enzyme inactivates beta-lactams in antibiotics
 - o Eg. ampicillin sulbactam

- Extended beta lactamase bacteria (ESBLs) are not going to be susceptible to betalactam and beta-lactamase inhibitor combinations
- **Cephalosporins** → another type of beta-lactams
 - Good gram positive activity
 - o Gram negative coverage improves from 1st to 4th generation
 - Enterococcus is resistant to cephalosporins
 - First generation cephalosporins
 - Eg. Cefazolin
 - Used for surgical prophylaxis because covers skin infections well
 - Some gram negative coverage: covers E. Coli, does not cover Pseudomonas
 - Second generation cephalosporins: less gram positive, but ↑ gram negative coverage
 - Eg. Cefoxitin, Cefotetan
 - Third generation cephalosporins
 - Eg. Ceftriaxone, Ceftazidime
 - Ceftriaxone used for non-catheter associated UTI, community acquired pyelonephritis, community acquired pneumonia
 - Fourth generation cephalosporins
 - Eg. Cefepime
 - Really good gram negative coverage, covers Pseudomonas
 - Compared to Tazocin, Cefepime doesn't cover anaerobes or enterococcus
 - Used for urosepsis during hospital stay, hospital acquired pneumonia
 - Fifth generation cephalosporins
 - Eg. Ceftaroline
 - Covers MRSA
 - Good gram negative coverage, but doesn't cover Pseudomonas
- Cephalosporin and beta-lactam combination
 - o Ceftolozane and tazobactam
 - New drug → reserved for salvage therapy for multi-drug resistant pseudomonas
 - Ceftazidime-avibactam
 - May have role in some ESBL and carbapenase producers
 - Reserved as salvage therapy for multi-drug gram negative infections

Aztreonam

19:40 - 21:09

- Mono-lactam
- No cross reactivity for patients with penicillin allergy → used for patients with severe penicillin anaphylaxis
 - <10% cross reactivity for patients with penicillin allergy to cephalosporins</p>
- No gram positive coverage
- Good gram negative coverage, covers Pseudomonas
- Never used as monotherapy → combined with vancomycin

Carbapenems

21:20 - 24:19

- Broad spectrum agents
 - Good gram positive coverage, does not cover MRSA, variable enterococcus coverage
 - Excellent gram negative coverage including ESBLs, Pseudomonas (except ertapenem)
 - Excellent anaerobic coverage
- Eg. Ertapenem → good for non-hospital intra-abdominal infections because when it is a community acquired infection, less worried about Pseudomonas and enterococcus infections
- Eg. Merapenam → common step-up option from Tazocin
 - o Covers gram positive infections including enterococci
 - o Covers gram negative infections including Pseudomonas and ESBL
 - Covers anaerobic
- Eg. Imipenem / Cilastatin → similar to Merapenam coverage
 - o Adverse effects: neurotoxicity especially in patients with renal dysfunction

Case Examples

24:20 - 30:35

- Empiric antibiotic for patient without penicillin allergy:
 - Tazocin
- Empiric antibiotic for patient with remote rash with penicillin, but tolerated Cefazolin:
 - o Cefepime + Metronidazole (for anaerobic coverage) ± vancomycin (for enterococci)
- Empiric antibiotic for patient with anaphylaxis to penicillin:
 - o Avoid penicillin, cephalosporins, and Carbapenems
 - Use aztreonam + Metronidazole + vancomycin
 - Consider previous antibiotic exposure because of resistant organisms
- Previous allergies:
 - A good history is important! Good questions to ask:
 - What happened last time?
 - How long ago did it happen?
 - If remote allergic reaction, consider re-challenge with cephalosporin because allergic reaction may have been due to impurities in drug, etc.
 - Penicillin skin test usually takes ~1 hr

Fluoroquinolones

30:36 - 33:14

- Inhibit DNA replication
- Concentration dependent killing drugs
- Often used in patients w/ severe penicillin allergies
- Considered "broad spectrum," but high rates of resistance
- (52:51) Fluoroquinolones have:
 - Potential to prolong QT interval
 - Bone and tendon toxicity
 - o Absorption minimal if given enterally with divalent cations because of chelation
- Eg. Moxifloxacin → good option for community acquired pneumonia
 - Covers strep, but no enterococci coverage
 - o Good gram negative coverage, but not Pseudomonas

- o Covers atypical organisms (ie. Legionella, Mycoplasma, Chlamydia)
 - Called atypical organisms because symptoms different than those who present with more typical bacteria
- Eg. Ciprofloxacin → good option for enteral gram negative infection with penicillin allergy
 - Limited gram positive coverage
 - Good gram negative coverage including Pseudomonas
 - Covers atypical organisms
- Eg. Levofloxacin → broad spectrum agent, but potential for overutilization
 - Good gram positive coverage including strep
 - Good gram negative coverage including Pseudomonas
 - Covers atypical organisms

Vancomycin

33:15 - 35:30

- Glycopeptide that inhibits cell wall synthesis; slowly bactericidal
- Killing dependent on total exposure → AUC/MIC
- Use therapeutic drug monitoring for efficacy and toxicity → measure trough concentrations
- Good gram positive coverage
 - Not ideal for MSSA, but good option for MRSA
 - o Covers enterococcus, but there is resistance
- No gram negative coverage
- Used enterally for C. diff infections → not systemically absorbed

Aminoglycosides

35:31 - 39:44

- Inhibitors of protein synthesis
- Concentration dependent killing
- Trough dependent toxicity → nephrotoxicity and ototoxicity
- Usually as synergistic therapy for selected gram positive and resistant gram negative infections → target different peaks depending on situation
- Use therapeutic drug monitoring to ensure achieved desired peak and monitor trough because of the associated toxicity
- Eg. Gentamycin
 - o Used for gram positive synergy with cell wall active agent
 - Good gram negative coverage
- Eg. Tobramycin
 - Similar coverage to gentamycin
- Eg. Amikacin
 - o Broader gram negative coverage
 - Tend to reserve for really resistant gram negative organisms
 - o Drug levels tend to be 4x that used for gentamycin or tobramycin

Macrolides

39:45 - 40:32

- Inhibit protein synthesis
- Concentration dependent killing
- Eg. Azithromycin
 - Some strep coverage
 - Excellent atypical coverage → why it is used in ICU patients
 - Used in complicated COPD exacerbations, adjunct with ceftriaxone for community acquired pneumonia
 - o May have immunomodulatory effects in Pseudomonas colonization

Linezolid

40:33 - 43:04

- Bacteriostatic
- Inhibits protein synthesis
- Very good gram positive coverage including MRSA and vancomycin-resistant enterococcus
 - o Non-inferior to vancomycin for MRSA pneumonia
- No gram negative coverage
- Toxicities:
 - Serotonin syndrome → linezolid was first discovered as MAOi
 - Case reports in literature when used with other serotonergic agents
 - Thrombocytopenia → no threshold of platelet count needed to start linezolid

Daptomycin

43:05 - 44:04

- Bactericidal; concentration dependent
- Covers gram positive organisms including MRSA and resistant
 - o Reserved as salvage therapy for MRSA bacteremia or VRE infection
- No gram negative coverage
- Cannot be used for respiratory infection as binds to surfactant
- Adverse effects:
 - Myopathies → requires CK monitoring at baseline and weekly afterwards

Sulfonamide Antibiotics

44:05 - 45:48

- Eg. Trimethoprim/sulfamethoxazole (TMP/SMX)
 - o Good staph coverage including MRSA, but not good for enterococci or strep
 - o Fairly good gram negative coverage, but does not cover Pseudomonas
 - First line for Pneumocystis pneumonia or stenotrophomonas
 - o Poor empiric choice for UTI
 - Toxicities:
 - Increases in serum creatinine
 - Hyperkalemia
 - Hypoglycemia
 - Bone marrow toxicity → related to total exposure

Clindamycin

45:49 - 47:16

- Used for oral anaerobes and gram positive organisms
 - o May be good agent for intraoral abscess or tooth infection
- Variable strep coverage and a lot of staphylococcal resistance developing
- No gram negative coverage
- High risk of C. diff infection
- **Tip!** For anaerobic infections: above the diaphragm use clindamycin, below the diaphragm use metronidazole

Colistin

47:17 - 48:42

- It is a polymyxin → acts like cationic detergent → alters osmotic barrier of cells
- Concentration dependent bactericidal agent
- No gram positive or anaerobic coverage
- Gram negative coverage includes Klebsiella, Enterobacter, and Pseudomonas
 - Does not cover Proteus
- Used for Multidrug resistant gram negative organisms → not used empirically
- Nephrotoxic

Glycylcycline

48:43 - 49:54

- Eg. *Tigecycline* → tetracycline derivative
 - Limited use for pneumonia or bacteremia because hard to achieve concentrations needed for good activity
 - o Bacteriostatic
 - o Reserved for multi-drug resistance gram negative organisms
 - Some gram positive coverage
 - Fairly good gram negative coverage, except for Pseudomonus, Proteus and Providencia

Metronidazole (Flagyl)

49:55 - 51:10

- Excellent anaerobic coverage
- Do not need to add metronidazole for agents that have good anaerobic coverage (eg. Tazocin and Carbapenems)
- First line agent for mild to moderate C. diff
- Can't be co-administered with alcohol

Vancomycin Resistant Enterococcus

51:11 - 52:50

- Vancomycin Resistant Enterococcus faecalis:
 - Often still susceptible to ampicillin, even if resistant to vancomycin
- Vancomycin Resistant Enterococcus faecium
 - Often also resistant to ampicillin → consider linezolid or daptomycin

Surgical Prophylaxis

53:40 - 54:24

- Add metronidazole to cefazolin for intraabdominal procedures
 - o Another option is to use second generation cephalosporin (eg. Cefoxitin, Cefotetan)

Comments or suggestions? Please email accrac@accrac.com or leave a comment on the website.
Fan of the show? Please take a moment to leave a comment and a rating to help others find the show!

Want to support the show? Patreon.com/ACCRAC to become a patron and support the making of the show, or donate to paypal.me/ACCRAC

Notes by April Liu