Episode 43: Maternal Physiology with Mike Hofkamp

On this episode: Dr. Jed Wolpaw and Dr. Mike Hofkamp

In this episode, episode 43, I welcome Dr. Mike Hofkamp to the show. Dr. Hofkamp is Director of OB Anesthesia at Baylor Scott & White Memorial Hospital and Clinical Associate Professor of Anesthesiology at Texas A&M Health Science Center College of Medicine. We discuss the changes to women's physiology when they become pregnant and the implications of those changes for anesthetic management.

Table of Contents

Hyperlinks to section of notes.

CARDIOVASCULAR SYSTEM	2
RESPIRATORY SYSTEM	2
OTHER PREGNANCY-RELATED CONDITIONS	3
HEMATOLOGICAL SYSTEM	3
IMMUNE SYSTEM	4
GASTROINTESTINAL SYSTEM	4
RENAL SYSTEM	5
ENDOCRINE SYSTEM	5
MUSCULOSKELETAL SYSTEM	5
NERVOUS SYSTEM	5
ANESTHETIC IMPLICATIONS OF PREGNANCY	5

Cardiovascular System

- "fetus is parasite" → mother is trying to physiologically support parasite
- Goal of cardiac system is to deliver more O₂ to fetus
- 50% \uparrow in CO \rightarrow SV \uparrow by 25%, HR \uparrow by 25%
 - 10 to 12kg ↑ in body weight; mostly plasma → RBC trying to catch up, but not able to resulting in physiological anemia of pregnancy
- LV end diastolic volume ↑, but no change in LV end systolic volume → ↑EF
- No change in LV stroke work index, pulmonary capillary wedge pressure, pulmonary artery diastolic pressure and central venous pressure
- Uterus is low resistance circuit; CO that goes there increases throughout pregnancy → ↓in systemic vascular resistance in ~2nd trimester
- Heart sounds:
 - o Exaggerated splitting of mitral and tricuspid components
 - o Grade 2 systolic murmur heard at left sternal border
 - S3 could be normal because of larger circulatory volume
 - S4 always abnormal
- EKG changes:
 - Increased HR
 - Shortening PR interval and uncorrected QT interval
 - QRS shift right at beginning of pregnancy and shift left at end of pregnancy due to displacement of diaphragm
- ECHO changes:
 - LV hypertrophy occurs by 12 weeks gestation reaching 50% ↑ by term → ↑in size, not #, of myocytes
 - o 94% of patients will have pulmonic and tricuspid regurgitation at term
 - 27% of patients will have mitral regurgitation at term
- During labour:
 - \circ First stage: 10% \uparrow CO because increase SV due to sympathetic activation
 - o Late first stage: 25% ↑ CO
 - Second stage: 40% ↑ CO
 - Immediately after delivery: 75% ↑in CO because offload pressure from fetus on IVC
 → increase venous return

Respiratory System

- Anatomy:
 - Thoracic cage \uparrow 5-7cm due to \uparrow relaxin hormone \rightarrow structural changes of ribcage
 - Capillary engorgement of nasal, oropharyngeal and larynx structures that occurs early in first trimester → contributes to dyspnea feeling
 - ↑diaphragmatic excursion, ↓chest wall excursion and pulmonary resistance
- Lung volumes:

No Change	Increased	Decreased
- FEV ₁	 Inspiratory reserve 	 Expiratory reserve
- FEV ₁ /FVC	volume 个 5%	volume ↓ 45%
 Flow volume loop 	- Tidal volume 个	- Residual volume ↓
 Closing capacity 	45%	15%

 Vital capacity 	- Inspiratory	 Functional residual
 Respiratory rate 	capacity 个 15%	capacity ↓ 20%
	- Dead space 个 45%	(√30% when
	 Minute ventilation 	supine)
	个 45%	 Total lung capacity
	- Alveolar ventilation	↓ 5%
	个 45%	

- FRC reflects worst gas exchange in pulmonary cycle → FRC is decreased so pregnant people desaturate quickly
- Blood gas:
 - Progesterone is respiratory stimulant $\rightarrow \uparrow$ MV \rightarrow left shift in CO₂ response curve

	Normal	1 st trimester	2 nd trimester	3 rd trimester
PaCO ₂ (mmHg)	40	30	30	30
PaO ₂ (mmHg)	100	107	105	103
рН	7.4	7.44	7.44	7.44
HCO ₃ -		21		20

- Progesterone and estrogen ↑ hypoxic ventilatory response
- Metabolism and respiration during labour

	First stage	Second stage	After delivery
Minute Ventilation	↑ 70 to 140%	↑ 120 to 200%	Remain ↑until ~6
			to 8 weeks after
O ₂ consumption	个 45%	个 75%	Remain ↑until ~6
			to 8 weeks after

- \circ O₂ supply not meet demand during labour \rightarrow accumulation of lactic acid
 - Neuraxial anesthesia attenuate O₂ demand and ↓lactic acid build-up
- o After delivery, FRC increase

Other Pregnancy-Related Conditions

- Pregnancy Associated Sleep Disorder is diagnosed condition caused by mechanical and hormonal changes → progesterone has sedating effect
 - Sleep quality worst in 1st and 3rd trimesters
- Pregnancy associated with transient restless leg syndrome

Hematological System

- Blood volume 个by 50% by 34 weeks gestation
- Physiologic anemia of pregnancy as plasma ↑ 55% vs. RBC production ↑ 30%
 - Estrogen ↑ renin → ↑ renal Na⁺ absorption by 900mg → 7L extra H₂O resorption
- Laboratory values:
 - Hb: 11.6 g/dL
 - o Hematocrit: 35.5%
 - Albumin diluted: $4.5g/dL \rightarrow 3.9 g/dL$ in 1st trimester $\rightarrow 3.3g/dL$ at term
 - o Total plasma: 7.8g/dL → 7.0g/dL
 - Maternal colloid osmotic pressure ↓ by 25%
- Hypercoagulability state in pregnancy
 - o Factors ↑ are I (fibrinogen), VII, VIII, IX, X, XII
 - o Factors unchanged are II, V

- Factors ↓ are XI, XIII
- Coagulation lab values:
 - o PT and PTT ↓ 20%

 - O Antithrombin III ↓
 - Platelet count show no change or ↓
 - No change in bleeding time
 - ↑in fibrin degradation products and plasminogen
- Gestational thrombocytopenia: 1% of healthy patients will have platelet count <100,000/mcL
 - o If see low platelet count, rule-out pre-eclampsia, eclampsia, HELLP syndrome
 - o Amount of platelets required for safe neuraxial anesthesia is difficult to quantify
 - Research shows cancer patients undergoing chemotherapy are able to get lumbar puncture without resulting in hematoma with platelet < 50,000/mcL
 - Dr. Mike Hofkamp uses cut-off of 70,000/mcL for epidural and 50,000/mcL for spinal → caveat is that everything else has to be perfect (ie. has to only be dilution effects responsible for low platelets)
- Normal blood loss:
 - o Vaginal 600mL
 - o C-section 1000mL
- Blood volume:
 - Drops from 150% at term to 125% of pre-pregnancy during 1st post-partum week
 - Drops to 110% of pre-pregnancy blood volume six to nine weeks post-partum

Immune System

- WBC 6000/mm³ pre-pregnancy to 9000-11,000/mm³ during pregnancy
- During labour, WBC reach 15,000/mm³ → without source of infection
- Polymorphonuclear leukocyte activity ↓ during pregnancy → potentially reason for ↑infection

Gastrointestinal System

- Stomach displaced upward and leftward → ↑ gastroesophageal reflux
- Gastric emptying not altered during pregnancy, but ↑ during labour
 - Progesterone slow esophageal peristalsis and intestinal transit → pregnant people are constipated with heartburn
 - o Risk of aspiration because of low pH and high volume
 - Epidural analgesia does NOT delay gastric emptying vs. epidural with fentanyl will delay gastric emptying because of systemic absorption of opioid
- Liver size, morphology and blood flow unchanged; LFTs rise to upper limit normal because of production in placenta
- ↑ risk of gallbladder disease because of biliary stasis, ↑secretion of bile with cholesterol
 - If patients going to have laparoscopic cholecystectomy, best during 2nd trimester because risk of anesthetic teratogenicity during organogenesis and decreased intraabdominal room in 3rd trimester
 - Rare for OB to do intra-op fetal monitoring

Renal System

- ↑ renal vascular volume and interstitial volume
- 个 50% GFR and renal plasma flow
- \(\ \) creatinine clearance 150 to 200mL/min; creatinine level should be lower than prepregnancy
- ↑ total protein excretion and urinary albumin excretion
- Renal compensation by ↑ HCO₃ secretion because of respiratory alkalosis (create lower PaCO₂ to offload fetus CO₂)

Endocrine System

- Thyroid:
 - ↑ thyroid function 50 to 70%
 - ↑total T3 and T₄ because estrogen induced ↑in globulins
 - Free T3 and T4 does not change so no thyrotoxicosis during pregnancy
- Glucose metabolism:
 - Mean glucose same
 - ↑ glucose demand because of fetus
 - o Insulin resistance due to placenta hormones (lactogen mostly responsible)
- Adrenal function:
 - Plasma cortisol: 100% ↑ after 1st trimester; 200% ↑ at term → result in ↑ fluid retention to support ↑ cardiac output

Musculoskeletal System

- Back pain result of relaxin → alters collagen fibers in pelvic connective tissue → allows pelvic to expand to expel fetus
 - o 19% of patients have back pain in 1st trimester
 - o 49% of patients have back pain at term

Nervous System

- MAC 40% lower in pregnant patients because of progesterone
- \uparrow endorphins and enkephalins found in plasma and CSF
- Require less local anesthetic to achieve epidural or spinal level because adiposity of tissues surrounding epidural and spinal space put pressure on epidural and spinal space
- Dependent on sympathetic nervous system to maintain hemodynamics → spinals and epidural catheters drop BP

Anesthetic Implications of Pregnancy

- Avoid supine position: gravid uterus compress IVC → ↓ venous return
 - Unclear what optimal level of lateral decubitus position is, but standard of care is to not have pregnant women lie flat on back
- 10x ↑ in failed intubations, but based on data before video laryngoscopes
 - Emerging data show airway management with pregnancy women is safer with video
- Consider use of smaller cuff due to airway engorgement → have 6.0, 6.5, 7.0 tube available
 - May not be able to pass larger tube
- \downarrow FRC and \uparrow O₂ demand \rightarrow more rapid hypoxemia (usually desaturate in <1minute)

Comments or suggestions? Please email accrac@accrac.com or leave a comment on the website.
Fan of the show? Please take a moment to leave a comment and a rating to help others find the show!

Want to support the show? Patreon.com/ACCRAC to become a patron and support the making of the show, or donate to paypal.me/ACCRAC
Notes by April Liu