Episode 41: Local Anesthetics

On this episode: Dr. Jed Wolpaw

In this episode, episode 41, I review local anesthetics including the mechanism of action, commonly used agents, pharmacodynamics and kinetics, toxicity and treatment, and common blocks.

Table of Contents

Hyperlinks to section of notes.

LOCAL ANESTHETICS OVERVIEW	2
MOTOR VERSUS SENSORY BLOCK	2
PHARMACOKINETICS	2
TYPES OF ANESTHETICS	3
ADDITIVES TO LOCAL ANESTHETICS	3
ABSORPTION OF LOCAL ANESTHETICS	3
TOXICITY AND SIDE EFFECTS	3
COMMON BLOCKS	4

Local Anesthetics Overview

0-3:22

- Weak bases used to block nerve conduction \rightarrow block sensory +/- motor
- Work through Na⁺ channel blockade from inside nerves
 - Easiest when channel is activated → nerves in use more often are more sensitive to local anesthetics because in activated configuration more often
- Two basic classes: amino-amides and amino-esters

Amino-amides	Amino-esters		
 Have amide link between intermediate chain and aromatic end Metabolized in liver Very stable in solution 	 Have ester link between intermediate chain and aromatic end Metabolized in plasma via pseudocholinesterase Unstable in solution More likely to cause allergic hypersensitivity reactions 		
 Eg. Lidocaine, mepivacaine, prilocaine, bupivacaine, etidocaine, ropivacaine, levobupivacaine Memory tip! all these words have 2 "I"s and amide has an "I" 	 Eg. cocaine, procaine, tetracaine, chloroprocaine, benzocaine 		

Motor versus Sensory block

3:23 - 4:23

- Sensory comes first, especially with bupivacaine and ropivacaine
- Old reasoning is that local anesthetics affect small diameter c-fibers first \rightarrow NOT TRUE
- Get sensory without motor by using less local anesthetics (\downarrow concentration, \downarrow volume)

Pharmacokinetics

4:24 – 7:58

- **Onset of action** is determined by pKa ightarrow local anesthetics are weak bases with NH₃ group
 - More acidic pH → more H⁺ ions → get NH₄⁺
 - More acidic pH → less H⁺ ions → remain as NH₃
- Higher pKa → more charged at physiological pH → slower onset of action as harder for charged particles to get into cells
 - pKa < pH of environment \rightarrow remain uncharged
 - pKa > pH of environment → get H^+ ion more often
 - Eg. lidocaine has low pKa → fast onset of action
 - Eg. chloroprocaine has higher pKa than lidocaine, but used in obstetrical anesthesia when want faster block → has low toxicity so can use high concentrations (3% chloroprocaine vs. 1.5-2% lidocaine)
- **Potency**: at given pH, more lipid soluble \rightarrow more potent
- **Duration of action:** \uparrow vasoconstriction and \uparrow protein binding \rightarrow longer duration

Types of Anesthetics

Type of Local	Onset	Max Dose		Duration of Act	ion
Anesthetic		Without epi	With epi	Without epi	With epi
		(mg/kg)	(mg/kg)	(hours)	(hours)
Lidocaine	Rapid because	4.5	7	2	4
	low pKa				
Mepivacaine	Rapid	5	7	3	6
Bupivacaine	Slow	2.5	3	4	8
Ropivacaine	Medium	2-3	No effect	3	6
Chloroprocaine	Rapid	10	15	30mins	60-90mins

Additives to Local Anesthetics

10:24 - 11:45

- Bicarbonate could increase speed of onset, but too much cause precipitate
 - o Usual amount used is 1meq into 9 mL of local anesthetic
- Epinephrine increase duration of action because counteract vasodilatory properties of local anesthetic
 - \circ $\,$ Only local anesthetic without vasodilatory effects is cocaine as it is a vasoconstrictor $\,$
 - $\circ~$ Centrally, have $\alpha 2$ receptors in spinal cord \rightarrow epinephrine increases action of anesthesia

Absorption of Local Anesthetics

- 11:46 12:32
 - Order of highest to lowest absorption: intercostal space > caudal epidural > lumbar and thoracic epidural > brachial plexus > subcutaneous

Toxicity and Side Effects

12:33 - 17:12

- CNS is affected first
 - \circ Lightheadedness, dizziness \rightarrow visual and auditory disturbances (eg. tinnitus)
- Cardiovascular affected later
 - \circ ↓ rate of depolarization in fast conduction fibers of Purkinje fiber and ventricular muscle → bradycardia
 - Depress spontaneous pacemaker activity in sinus node \rightarrow sinus bradycardia \rightarrow arrest
- Treatment of cardiovascular collapse:
 - o Start ACLS
 - o 1.5ml/kg bolus of intralipid 20% followed by 0.25mL/kg/min infusion for 10 minutes
- Ropivacaine is S-isomer of bupivacaine \rightarrow thought to be less cardiotoxic than bupivacaine
- Other effects:
 - Hypotension from high epidural or spinal block
 - Methemoglobinemia \rightarrow prilocaine is worst offender at about doses > 600mg
 - Transient neurological symptoms (TNS) → more common with spinal lidocaine, incidence 13%, relative risk compared to prilocaine, bupivacaine, ropivacaine is 4

- Painful buttocks and thighs ± radiation to lower extremities
- Begins few hours after spinal anesthesia
- Lasts as long as 10 days, usually shorter
- No bowel or bladder dysfunction
- All electrophysiological studies are normal
- No studies showed permanent effects

Common Blocks

17:13 – 24:15

- Peripheral blocks:
 - o 1.5-2% mepivacaine for short blocks (eg. upper extremity for AV fistula)
 - o 0.5% ropivacaine or bupivacaine for longer blocks (eg. brachial plexus, femoral block)
 - Lasts up to 12 hours for ropivacaine and up to 16 hours for bupivacaine
 - Amounts:
 - Femoral \rightarrow 20cc
 - Popliteal → 25-30cc
 - Saphenous \rightarrow 20cc
 - Interscalene → 20-30cc
 - Supraclavicular \rightarrow 30-40cc
 - Axillary \rightarrow 30-40cc
 - Transversus abdominis plane → dilute to 0.25% bupivacaine and use 30cc each side
 - Paravertebral \rightarrow 5cc per level
 - Catheters: (eg. popliteal catheter)
 - 0.2% ropivacaine at 8-12mL/hour + 2-3cc demand dose
- Spinals:
 - C-section spinals: 8 to 12mg of bupivacaine ± morphine and fentanyl to increase duration of action ± epinephrine to increase depth and duration of action
 - Non-C-section spinals: 0.75% bupivacaine 5mg to 22.5mg depending on length of surgery and levels
 - Hypobaric may travel up and cause high spinal
 - Avoid lidocaine and mepivacaine because increased risk of TNS
- Epidurals:
 - Labour epidurals: 2% lidocaine or 2-3% chloroprocaine
 - 10 to 15 cc bolus; then, titrate to effect
 - o Lumbar epidurals: 1.5cc per level for 20 year old
 - Thoracic epidurals: 1cc per level for 20 year old
 - Rule of thumb: need 1% less per year
 - Eg. 50 year old patient will need 50% less
 - \circ $\;$ Rule of thumb: obesity and pregnancy will reduce dose by 1/3 $\;$

Comments or suggestions? Please email accrac@accrac.com or leave a comment on the website. Fan of the show? Please take a moment to leave a comment and a rating to help others find the show! Want to support the show? Patreon.com/ACCRAC to become a patron and support the making of the show, or donate to paypal.me/ACCRAC

Notes by <mark>April Liu</mark>