Episode 36: Pediatric respiratory anatomy and physiology with Dr. Schwengel

On this episode: Dr. Jed Wolpaw and Dr. Deb Schwengel

In this episode, episode 36, I welcome Dr. Deb Schwengel, one of our pediatric anesthesiologists and our residency program director, to the show to discuss the differences in anatomy and physiology in pediatric versus adult patients.

Table of Contents

Hyperlinks to section of notes.

PEDIATRIC AIRWAY ANATOMY	2
ETT CHOICE	2
PEDIATRIC PHYSIOLOGY	2
PEDIATRIC DIAPHRAGM	2
MASK INDUCTION	3
CIRCUIT DIFFERENCES	3
ANESTHETIC AGENT DOSAGES	3
LARYNGOSPASM	3
MAPLESON CIRCUITS	3

Pediatric Airway Anatomy

- Infants have larger occiput so automatically in sniffing position \rightarrow stabilize with head ring ± shoulder roll
- Larynx is higher (adult at C5 vs. newborn at ~C3) \rightarrow do not tilt back with laryngoscope on DL
- Mandible slightly retrognathic and midface hypoplasia →airway easily obstructed so do jaw thrust when mask ventilating
- Tongue larger
- Epiglottis stiffer and longer \rightarrow lift up epiglottis with straight blade; may not have perfect view
- Laryngeal structure more cartilaginous with less ligamentous development \rightarrow larger arytenoids relative to size of glottis
- Pediatric trachea elliptical, not round
- Cricoid ring narrowest \rightarrow based on cadaveric specimens and may not be true
 - Narrowest portion of airway of adults is glottis
- Length of trachea is short: full term baby has 4 to 5cm trachea, 1kg preterm has 2cm trachea
- Tip: advance ETT until lose breath sounds on left side to determine height of carina. Then, position tube properly depending on patient's head positioning for surgery
- Tracheal ring not complete in infants \rightarrow external pressure could easily compress trachea

ETT Choice

- Typically use cuffed tubes \rightarrow reduce number of passes to find proper sized tube
- Historically, did not use cuff tubes because older cuffed tubes did not fit properly around pediatric cricoid ring and carina

Pediatric Physiology

- Kids have \uparrow respiratory rate \rightarrow increased minute ventilation
 - Tidal volume is the same; ~5 to 7mL/kg to ~6 to 8mL/kg
- Oxygen consumption ~3x higher → adults 2 to 4mL/kg/min vs. infants 6 to 9mL/kg/min
 - Highest oxygen consumption at 4 to 6 weeks of life when going through growth spurt
- Functional residual capacity (FRC) is similar to adults; ~ 30 to 35mL/kg
 - Infants chest wall is excessively compliant, but lungs are stiffer \rightarrow more effort needed to maintain FRC and avoid atelectasis $\rightarrow \downarrow$ FRC when anesthetized
 - School aged children have FRC of 20mL/kg when anesthetized
 - Toddlers have FRC of 17mL/kg when anesthetized
- Kids have 6x higher risk of desaturation when apneic
- Loss of expiratory braking → infants create auto PEEP with partial glottis closure and stenting of intercostal muscles
 - Use of PEEP, faster rate, peak inspiratory pressure (PIP), and longer inspiratory time when mask ventilating to prevent FRC loss
 - Longer inspiratory time prevents alveoli collapse

Pediatric Diaphragm

- Pediatric diaphragm is flatter structure $\rightarrow \downarrow$ movement so \downarrow negative intrathoracic pressure
- Immature respiratory fibers of diaphragm ightarrow more easily fatigued
- Resistance inversely proportional to radius⁴ \rightarrow more resistance

Mask Induction

- Less vessel rich organs (ie. skeletal muscle) so large amount of cardiac output goes to brain → faster onset of anesthetic agents allows use of mask induction
- Three breath technique \rightarrow take whole vital capacity breathes and hold
- Start mask induction with nitrous oxide because sevoflurane smells bad

Circuit Differences

- Pediatric circuit has smaller bore tubing
- EtCO₂ harder to measure because machine dead space is significant for smaller infant
- Rely on chest rise and fall because longer spirometry circuits (eg. for MRIs) unreliable

Anesthetic Agent Dosages

- MAC higher in kids \rightarrow MAC curve different for each volatile agent
 - Unsure of mechanism
- Propofol dosages larger:
 - \circ ~ Induction doses of 5mg/kg is not uncommon
 - Infusion dosing at 200mcg/kg/min to 500mcg/kg/min

Laryngospasm

- Higher risk of laryngospasm in pediatrics
- Don't usually use IV induction which bypasses stage II anesthesia
- Mask induction prolongs stage II anesthesia
- Initial management: PEEP and jaw thrust; if airway maneuvers unsuccessful, use IM succinylcholine and atropine
- Awake vs. deep extubation depends on patient and procedure

Mapleson Circuits

- Mapleson circuit used for transporting patients → green bag does not stay inflated unless actively inflating it
- More dead space
- Don't conserve heat, water vapor, anesthetic vapor

What techniques do you use for pediatric anesthesia? What circuits do you use for pediatric anesthesia?

Comments or suggestions? Please email <u>accrac@accrac.com</u> or leave a comment on the <u>website</u>. Fan of the show? Please take a moment to leave a comment and a rating to help others find the show! Want to support the show? <u>Patreon.com/ACCRAC</u> to become a patron and support the making of the show, or donate to <u>paypal.me/ACCRAC</u> Notes by <u>April Liu</u>