Episode 19: Vasoactive medications

On this episode: Dr. Jed Wolpaw

In this episode I review the receptors that vasoactive drugs act on. I then review the main vasoactive medications used in the OR and the ICU to treat acute hypotension and the ones used to treat acute hypertension.

Table of Contents

Hyperlinks to section of notes.

RECEPTORS	2
VASOPRESSORS	2
INODILATORS	2
SIDE EFFECTS	3
TREATMENT OF HYPOTENSION	3
VASODILATORS	3

Receptors

- $\alpha 1$ adrenergic receptor is Gq protein coupled receptor $\rightarrow \uparrow Ca^{2+}$ in smooth muscle cell \rightarrow smooth muscle contraction
- $\alpha 2$ adrenergic receptor is Gio protein coupled receptor \rightarrow presynaptic negative feedback
 - Eg. dexmedetomidine, clonidine
 - Antihypertensive, anxiolytic, sedation
- β1 adrenergic receptor is Gs protein coupled receptor
 - Found in cardiac muscle
 - \uparrow cAMP → \uparrow HR, contractility, and AV nodal conduction
 - β2 adrenergic receptor is Gs protein coupled receptor
 - Smooth muscle relaxer peripherally in vasculature and lungs
- β3 adrenergic receptor leads to lipolysis
- Vasopressin 1 receptor is GPCR \rightarrow smooth muscle contraction
- Dopamine receptor \rightarrow smooth muscle contraction
- Phosphodiesterase (PDE) 3 breaks down cAMP
 - Inhibition prevents break down of cAMP \rightarrow ↑ cAMP \rightarrow ↑ HR, contractility, and AV nodal conduction in heart AND peripheral smooth muscle relaxation

Vasopressors

- Vasopressors = act as vasoconstrictors on peripheral vasculature
 - Eg. Epinephrine, norepinephrine, dopamine, phenylephrine, ephedrine
- Epinephrine: $\alpha 1 \alpha 2$, $\beta 1$, and $\beta 2$ agonist
 - Doses at 0.01 to 0.04mcg/kg/min \rightarrow primarily β1 agonist
 - Doses at 0.08 to 0.1mcg/kg/min and above → α 1, β1 agonist
 - Code doses have $\uparrow \alpha 1$ agonist affect \rightarrow vasoconstriction and relaxation of bronchial smooth muscles through $\beta 2$ agonist
- Norepinephrine: $\alpha 1$, $\alpha 2$, and $\beta 1$ agonist, with minimal $\beta 2$ agonism
 - Effect is mostly positive inotropy and strong vasoconstrictor
- Dopamine: $\alpha 1 \alpha 2$, $\beta 1$, $\beta 2$ agonist, and all dopamine receptor agonism
 - \circ Dopamine in theory causes increased blood flow to kidneys \rightarrow not shown to improve renal outcomes clinically
- Phenylephrine: selective α1 agonist
 - Effect is peripheral vasoconstriction; no effect on heart
- Ephedrine acts indirectly by stimulating release of norepinephrine
 - \circ $\;$ Less effect with multiple doses in bolus form \rightarrow not used as infusion

Inodilators

- Inodilators = medications that provide inotropy and peripheral vasodilation
 - Eg. dobutamine, milrinone, isoproterenol
- Dobutamine: $\beta 1$ agonist and to a lesser degree $\beta 2$ agonist
 - $\circ ~~\beta1~\text{effect} \rightarrow \uparrow$ inotropy, \uparrow CO, \uparrow HR, \uparrow AV nodal conduction
 - \circ β2 effect → peripheral vasodilation → hypotension
 - o Good for heart failure
- Milrinone: PDE3 inhibitor
 - \uparrow cAMP in cardiomyocytes → \uparrow inotropy, \uparrow HR, \uparrow AV nodal conduction

- \circ \uparrow cAMP in smooth muscles peripherally \rightarrow peripheral vasodilation \rightarrow \downarrow SVR
- Isoproterenol: mostly $\beta 1$ agonist and some $\beta 2$ agonist
 - \circ Main effect is \uparrow HR with some \uparrow inotropy and AV nodal conduction
 - o β2 peripheral effect is less pronounced

Side Effects

- Inodilators:
 - o Systemic hypotension because of β2 activity
 - \circ Risk of arrhythmias because of β1 activity → increased risk with higher dose
- Vasopressors:
 - β 1 agonism → risk of arrhythmias
 - \circ Peripheral vasoconstriction \rightarrow peripheral and splenic ischemia
 - Digital ischemia with high doses and prolonged period of norepinephrine
 - Intestinal ischemia → worry about anastomosis

Treatment of Hypotension

- Don't treat a number, treat the mechanism
- Eg. hypotension after induction is most likely from propofol; treated with phenylephrine or ephedrine if HR is low
- Eg. septic shock; treated with norepinephrine ± vasopressin because dealing with peripheral vasodilation from sepsis → need strong vasoconstrictor
 - Epinephrine is third line
 - o Dopamine inferior because causes more arrhythmia
 - \circ No phenylephrine because \downarrow CO from \uparrow SVR
- Eg. cardiogenic shock \rightarrow need inotropy
 - If hypotensive \rightarrow epinephrine
 - If poor CO, but not hypotensive \rightarrow dobutamine or milrinone
- Eg. hemorrhagic shock ightarrow resuscitate instead of vasopressors
- Eg. aortic stenosis → heart pushing against fixed defect
 - Goal is to lower HR because need time for LV to fill and push out against stenotic valve
 - \circ Use phenylephrine $\rightarrow \alpha 1$ causes systemic vasoconstriction with reflex bradycardia
- Eg. tamponade \rightarrow keep HR fast with increased inotropy
 - Use epinephrine
- Eg. pulmonary hypertension with systemic hypotension
 - Only vasopressor that doesn't affect pulmonary vascular resistance is vasopressin
 - Use vasopressin alone
- Eg. hypotension with arrhythmias
 - Phenylephrine or vasopressin → don't have β agonism
 - If patient is hypotensive because of arrhythmia → think about cardioversion rather than vasopressors

Vasodilators

- Nicardipine \rightarrow Ca²⁺ channel blocker
 - IV infusion has onset 1 to 2 minutes; once infusion stopped, take ~30 minutes for effect to decrease by ½

- Start around 5mg/hr and titrate up to 15mg/hr for effect
- Nitroglycerin \rightarrow forms NO \rightarrow increased cGMP \rightarrow smooth muscle dilation primarily in coronary arteries and systemic veins $\rightarrow \downarrow$ preload and small amount of \downarrow afterload
 - Onset 30 seconds; offset 3 to 5 minutes
 - Start at 5mcg/min and titrate up to 400 mcg/min
 - Common side effects:
 - Headache
 - Tachyphylaxis → people need higher doses to get same effect
 - CANNOT be given to patients who have taken Viagra or similar medications
 - Nitroprusside ightarrow direct action on arteriole and venous smooth muscle $ightarrow \psi$ afterload
 - Onset 1 minute; offset 1 to 10 minutes
 - o Start 0.3mcg/kg/min to maximum of 2mcg/kg/min to avoid cyanide toxicity
 - Could go up to 10mcg/kg/min, but only able to do it for 10 minutes to avoid cyanide toxicity
- Labetalol $\rightarrow \alpha$ and β blocker
 - \circ IV labetalol has 7x stronger β blocker effect
 - \circ PO labetalol has 3x stronger β blocker effect
 - Used as IV bolus 10 to 20mg to treat hypertension
 - Infusion dosage is 0.1mg/min to maximum of 8mg/min
 - Drug of choice for aortic dissection because ↓ BP and ↓ inotropy to ↓ Δ pressure/ Δ time (shearing force)
 - Onset 5 to 15 minutes; duration of action is up to 15 hours → do not use if worried about hypotension
 - Non-selective β blocker \rightarrow not ideal for patients with asthma
- Nicardipine, nitroglycerin and nitroprusside could cause shunting
 - Dilatory effect interferes with hypoxic vasoconstriction → \uparrow V/Q mismatch → poor oxygenation and shunting

Comments or suggestions? Please email accrac@accrac.com or leave a comment on the website. Fan of the show? Please take a moment to leave a comment and a rating to help others find the show! Want to support the show? Patreon.com/ACCRAC to become a patron and support the making of the show, or donate to paypal.me/ACCRAC Notes by April Liu